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Abstract

[237] Generalized Darwinism models cultural development as an evol-
utionary process, where traits evolve through variation, selection, and
inheritance. Inheritance describes either a discrete unit’s transmission
or a mixing of traits (i.e. blending inheritance). In this paper, we compare
classical models of cultural evolution (cf. Boyd and Richerson 1988;
Mesoudi 2011) and generalized population dynamics (Schurz 2011) with
respect to blending inheritance. We identify problems of these models and
introduce our model, which combines relevant features of both. Blending
is implemented as success-based social learning, which can be shown to
be an optimal strategy.

Keywords: cultural evolution, generalized Darwinism, blending in-
heritance, success, social learning

1 Introduction

This paper deals with a special kind of inheritance in cultural evolution, i.e.
within the framework of generalized Darwinism. This framework is postulated
by scientists and philosophers from different fields of research as a new and in-
terdisciplinary theoretical structure or paradigm (cf. e.g. Richerson and Boyd
2001; Reydon and Scholz 2014). An extensive overview of the generalized-
Darwinism approach is, e.g., provided by Schurz (2011). For a strong defense
of generalized Darwinism and a carefully worked out core of Darwinian prin-
ciples see Aldrich et al. (2008). Different approaches and some methodological
problems are discussed by Crozier (2008) and Witt (2004). [238] For a critical,
but fruitful investigation concerning Darwinian concepts outside of biology,
see Reydon and Scholz (2014).

[*][This text is published under the following bibliographical data: Feldbacher-Escamilla, Chris-
tian J. and Baraghith, Karim (2020). ‘Cultural Inheritance in Generalized Darwinism’. In: Philo-
sophy of Science 87.2, pp. 237–261. DOI: 10.1086/707564. All page numbers of the published text
are in square brackets. For more information about the underlying project, please have a look at
http://cjf.escamilla.academia.name.]
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We will focus on cultural inheritance, which differs from biological repro-
duction in relevant aspects. As described perhaps most prominently by Boyd
and Richerson (1988), Mesoudi (2011) or Lewens (2015), cultural inheritance
can be modeled as different forms of social learning. In the following investig-
ation, we will define a specific learning mechanism which consists of a success-
based weighting of variants of cultural behavior which are then blended by an
agent who observes them. The underlying assumption is that such variations
typically are not the result of an unweighted averaging of given traits which
then are passed on. Instead, they are guided by principles that make them the
most promising or attractive for social learning.

Our project can be considered a study of philosophy of the special sciences,
providing a rational reconstruction of scientific notions, models, and theor-
ies. Philosophical rational reconstruction as explication in the wide sense con-
sists of two steps (cf. Carnap 1950/1962, §§2–3): identifying the explicandum as
clearly as possible, and introducing an explicatum to replace the former. In our
case, the concept we are mainly concerned with is blending inheritance in cul-
tural evolution. Our reconstruction will be rational in the sense that we provide
a justification for considering the model to be adequate. And it is philosoph-
ical, because the reasons we provide are not empirical (e.g. about the empirical
adequacy), but normative ones.

Our investigation is structured as follows: In section 2, we take the first step
of the reconstruction, clarifying the notion of blending inheritance and discuss-
ing the main theoretical constraints and arguments for blending put forward in
cultural evolutionary theory: homogeneity (blending decreases the otherwise
too high variation rate due to biases and drift), and fitness enhancement (2.1).
We also describe how the discussion of cultural evolutionary biases is linked
to social learning strategies (2.2). To our knowledge, this relation has not been
noted before and plays an important part in the second step. In section 3, we
finalize the first step by describing two prominent models of cultural inherit-
ance, one model by Boyd and Richerson (1988) and a population dynamical
model described by Schurz (2011). An innovation of the former was the in-
troduction of the distinctive feature of cultural inheritance, namely blending
inheritance, as social learning (3.1). An advantage of the latter is the simplicity
of implementing a frequency dependency bias, which we will identify as a par-
ticular variant of social learning (3.2). In section 4, we finalize the second step
of the rational reconstruction by combining features of both models. Blending
inheritance is introduced as a form of social learning via success-based weight-
ing. We also provide a normative rationale for the model (4.1). We conclude
the investigation with some provisos and a simulation illustrating the result of
the rational reconstruction (4.2). [239]

2 Blending Inheritance in Cultural Evolution

As indicated in the introduction, we will commence our rational reconstruction
by characterizing different constraints for the notion of blending inheritance put
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forward in the literature. Afterwards, we will analyze the ingredients of these
constraints as a form of social learning, which will be of utmost importance for
the second step of our reconstruction.

2.1 Different Explanatory Roles of Blending Inheritance

In this section, we provide a general discussion of the notion of inheritance in
cultural evolution, which is, due to its specific feature of mixing traits, some-
times also called blending inheritance. First, we hint at some historic roots of the
concept, then we briefly outline our explication to provide a starting point for
the modeling in the subsequent sections.

Mesoudi (2011, p.61) applies the term ‘blending inheritance’ to a certain
microperspective, namely to trait copying individuals who are exposed to the
cultural traits of more than one person, adopting the average of all of those traits.
However, in Darwin’s time (as well as contemporarily—cf. Lande 1979), blend-
ing inheritance was thought to happen in natural evolution as well, even if
Mendelian genetics was accepted (for the following, cf. Mesoudi 2011, pp.41f;
and Richerson and Boyd 2005, p.88). According to this hypothesis, offspring
constitute an intermediate form of their parents. Darwin himself proposed that
inheritance takes an average of the genetic contributions of both parents. How-
ever, as Fleeming Jenkin has pointed out in a review of the Origin as early as
in 1867, such a concept of inheritance would mean that variation would be re-
duced by half at each new generation, and variety would disappear quickly (if
there is no sufficiently high mutation rate). In consequence, Darwin himself
abandoned blending as a principle for inheritance in natural evolution and left
the problem of inheritance unresolved. Only when the significance of Gregor
Mendel’s work was properly understood and appreciated, and due to Ronald
A. Fisher’s population dynamical models, this problem of biological inherit-
ance was tackled. Establishing principles of particulate heredity via the trans-
mission of discrete units (genes) and transmission rules, such as the distinction
between dominant and recessive alleles, did the job.

There are theories of cultural evolution which adopt particulate inherit-
ance for the cultural realm, but operationalizing such cultural units, as meme-
theorists have tried to do, has been the subject of severe critique (cf. Lewens
2015, pp.26). One of the reasons is that cultural inheritance seems, indeed, to
be nonparticulate and blending in many relevant cases.

Not only is it hard to identify and operationalize the notion of discrete units
of cultural inheritance, but there are also more general arguments in favor of
nonparticulate cultural inheritance. The approach of cultural attractors of Sper-
ber (1997) and Claidière and Sperber (2007) argues that [240] discrete units of
cultural inheritance are misguided and superfluous, since assuming a distribu-
tion of psychological dispositions among humans on the natural level suffices
to explain similar developments in culture, without there being a need to as-
sume memes as units of reproduction.

Richerson and Boyd (2005, pp.88f) also argue for distinct principles of inher-
itance in culture as opposed to nature. For natural inheritance, Jenkin argued

3



that nonparticulate blending leads to too much homogeneity in the sense that
variety vanishes, and Fisher’s further theoretical framing shows that discrete
units of inheritance allow for upholding variety or adequate heterogeneity. On
the other hand, in cultural evolution it seems that due to the high variation rate
(in a wide sense), assuming discrete units of inheritance such as memes would
lead to too much heterogeneity, and that given a high variation rate, nonpar-
ticulate blending inheritance allows for adequate homogeneity. So, whereas
discrete units in natural inheritance allow for balancing inheritance towards
adequate heterogeneity, blending in cultural inheritance allows for balancing
inheritance towards adequate homogeneity:

“We can even imagine that cultural transmission is sufficiently
noisy and error prone that blending inheritance would be an ad-
vantage in keeping cultural variation from growing disastrously
large. In a noisy world, taking the average of many models may be
necessary to uncover a reasonable approximation of the true value
of a particular trait.” (cf. Richerson and Boyd 2005, p.89)

In the same line, Henrich, Boyd and Richerson (2008, misunderstanding 1 and
2) argue against the misunderstanding of cultural evolution that “[r]eplicators
are necessary for cumulative, adaptive evolution”.

As we will see in the sections on modeling cultural evolution (3 and 4),
evolutionary simulations suggest that blending inheritance in fact results in
the reduction of cultural variation in the population. Indeed, as discussed by
Jenkin for biological inheritance, if blending inheritance were the only pro-
cess on cultural variation in the population, it would eliminate that variation
completely, since intermediate traits of the daughter generations are always
coming from more “extreme” ancestral traits. However, it is a high variation
or mutation rate (as in natural evolution) and other evolutionary “forces” such
as guided variation, content bias, and several kinds of randomization such as
drift, which run against a homogenization effect and keep up variation and
change over the cultural generations—or, as Mesoudi (2011, p.62) aptly puts it:

“Obviously, in the real world blending inheritance cannot be the
only process operating on cultural evolution, otherwise we would
not see the enormous cultural variation [. . . ]: 7.7 million patents,
10,000 religions, 6,800 languages, and so on. There must, then, be
other processes at work.”

So, in general, blending inheritance is characterized as a process in which
a single individual adopts the average of two or more demonstrators’ con-
tinuous traits, whereas in the case of particulate inheritance discrete traits are
copied. [241] We will now outline our explication of blending inheritance as
success-based social learning.

Key to understanding the notion of blending inheritance is that it can in-
crease the frequency of the relevant traits, a fact that many authors do not stress
enough. This possibility is depicted in figure 1. If we assume two cases of re-
production, one of particulate (left side) and one of blending inheritance (right
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side), then the resulting macroevolutionary patterns might exhibit a higher fre-
quency in the case of blending inheritance. We will say a bit more about figure
1 below.

A(a)

A(a)B(b)

b

A,B,. . . species

Macrolevel

A(a)

A’(ab)B(b)

b,ab

a2 b2

a1

Microlevel

a,b,ab,. . . traits

ab(70%b2+30%a2)
a2 b2

a1

Figure 1: Blending inheritance on a microlevel and the possible results on a macrolevel. If we
assume (at the bottom right) that traits a2 and b2 blend together under some guided principle of
weighting and form a new trait (ab), and that the 70% of b2 as well as the 30% of a2 that remain
in the new combined trait are not maladaptive, then species A′ (top right) should be fitter than
in the unblended case on the left. (Indices represent generation numbers and arrows represent
transmission.)

In cultural evolutionary modeling, the concept of traits describes identifi-
able units of cultural transmission. The “units” of inheritance and selection are
not biological organisms or their genes, but cultural information, skills, or arti-
facts, which are selected by, vary between, and are inherited through cultural
“generations”. Accordingly, these generations are not biological lifecycles, but
cultural reproductive cycles. Each transmission of socially acquired informa-
tion from one individual to the next makes up a reproductive cycle, [242] in
which a cultural trait is passed on. The units can be represented by discrete
entities, as is the case in the models in section 3.2, or by continuous values, as
in the models in sections 3.1 and 4. More specifically, in our examples we think
of traits as behavioral dispositions. The term fitness is well defined in natural
evolution, i.e. the number of an organism’s reproducing offspring (fertility no-
tion). In cultural evolution, such a straightforward definition is problematic
due to the individuation problem of cultural units (cf. Ramsey and De Block
2017). However, as Boyd and Richerson (1988), we will assume that cultural
traits are given. We then identify the fitness of such a trait with the coefficient
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used to calculate the dynamics of the relative frequencies of that variant across
generations. Therefore, it is important to note that with ‘fitness’ we do not
mean biological fitness of the organism bearing that variant. Rather, we mean
a coefficient linking the relative frequency of a cultural variant in the set of all
relevant alternative cultural variants across generations. Note that we also pre-
suppose a notion of relevant alternatives here. Since a cultural variant cannot be
blended with every other cultural variant, we are only interested in the relative
frequencies of cultural variants which can be blended together. For example,
it is possible to mix different styles of piano playing to “create” a new style,
but impossible to mix a piano-playing style with a way of cooking (although
cooking styles themselves might be mixed with one another). We assume that
categories in which cultural variants or traits can be blended together are given
by their cultural function in the first place. This cultural evolutionary function
plays a significant role in the emergence of higher-order categories or types. A
philosophical approach which encapsulates this idea is teleofunctionalism (cf.
Millikan 1984, 2005).

An example will illustrate the principle of fitness enhancement via blend-
ing along the lines of figure 1: On the lower left side we see trait a, which is
passed on from the mother generation (a1) to the daughter generation (a2). For
illustrative purposes, let us assume that the generations are political election
cycles, and the traits are political dispositions, such as being left- or right-wing
(cf. Boyd and Richerson 1988, p.70; and also Mesoudi 2011, p.61). More spe-
cifically, the traits should be interpreted as manifestations of such dispositions,
such as acting x% in accordance with left-wing politics. In this interpretation, a
blended trait is a mixed manifestation of two dispositions, e.g., acting 70% ac-
cording to right-wing and 30% according to left-wing politics. The left side of
figure 1 shows a simple case of particulate inheritance with two such variants
(a2, b2) at generation 2. On the right, blending inheritance is depicted. Here,
trait a was not fit for one reason or another, so we do not find it anymore in the
daughter generations. However, a new (unblended) variant b arose, as well as
a blended variant ab. Let us assume a proportion of 70% (b) to 30% (a) in ab.
Let us further assume that the 30% of a were not the reason why it died out,
meaning that they are not maladaptive given a certain environment. [243] To
the contrary: maybe the agent who mixed it into the new combined trait ap-
proved it as useful. The resulting macrolevel structure (right side, top) exposes
two hypothetical daughter species B and A′, where the latter holds of the com-
bined trait ab. Assuming that the 30% of a that remained in ab are useful and
even provide some increase in success, the cultural species A′ should now be
fitter than in the left case. In this way, blending inheritance might prove to be
advantageous. It is important to note that this view of blending as a principle
of fitness enhancement presupposes that blending is adaptive. Trait ab with 30%
a and 70% b only increases fitness, if, roughly speaking, ab manifests a in the
30% of cases, in which a is advantageous to b, and ab manifests b in the 70%
of cases in which b is advantageous to a. We call this form of blending adapt-
ive blending. If ab would manifest a in 30% of the b-advantageous cases, and
b in 30% a-advantageous cases as well as 40% b-advantageous cases, blend-
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ing would be maladaptive. We can also define the notion of random blending
where ab manifests a and b with random frequency (a 30% and b 70%). Ran-
dom blending does not generally enhance fitness. It is important to distinguish
these tree forms of blending (adaptive, maladaptive, and random), because our
model in section 4 focusses on adaptive blending only and shows under which
assumptions it is optimal.

2.2 Identifying Cultural Evolutionary Biases as Social Learn-
ing Strategies

According to Boyd and Richerson (1988, p.72), cultural transmission is often
employed by individuals who try to estimate which behavior of other indi-
viduals in their environment has been favored by selection in previous gen-
erations. This form of transmission can be characterized as social learning, as
opposed to individual learning, where one achieves information and know-
ledge via a process of trial and error (e.g. in experiments).

Modeling cultural evolution in the framework of social learning allows us
to spell out two basic features of generalized Darwinism, variation and inher-
itance. The third feature, selection, enriches cultural modeling by introducing
“forces of cultural evolution” in the form of biases. According to Richerson
and Boyd (cf. 2005, p.68), the three most important biases are content-based bi-
ases, model-based biases, and frequency-based biases. In Boyd and Richerson (1988,
p.135), content-based bias is also referred to as ‘direct bias’, which means that
one cultural variant is more attractive to the learner than others. So, the prob-
ability of such a variant being chosen by a social learner is higher than that of
its alternatives. Model-based bias is also referred to as ‘indirect bias’, which
means that the choice of a cultural variant by the learner depends on how suc-
cessful its bearer is in the mother generation. Model-based biases are active,
e.g. in authority imitation or peer imitation where, apart from the prestige of
the learner’s parental models, similarity of the parent to the learner influences
success. [244] Finally, frequency-based biases are active in a model of cultural
evolution if the probability of choosing a variant among the set of all its altern-
atives depends on the frequency of the variant in the mother generation. If this
probability is positively correlated with frequency, then the bias is a conformist
one. If they are negatively correlated, then the bias is nonconformist. In fig-
ure 2, we provide a simplified taxonomy of these biases. They are considered
different kinds of social learning, because according to Boyd and Richerson
(1988, p.136), “individuals select from among the alternative cultural variants
that have been modeled for them rather than choosing among self-generated
alternatives”.

It is interesting to note that this taxonomy of different forms of biased learn-
ing (partially) matches a taxonomy of social learning as used in applied ma-
chine learning literature. Figure 3 gives a general overview of these different
forms of social learning. [245]

Learning can either be individual or social. Individual learning is trial-
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Learning

Individual Learning
E.g. trial & error
guided variation

Social Learning

Non Frequency-Based Biased

(β) Model-Based Biased

(β2) Peer Imitation

(β1) Authority Imitation

(γ) Content-Based Biased

(α) Frequency-Based Biased

(α2) Nonconformist Biased

(α1) Conformist Biased

Figure 2: An overview of social learning with different biases along the lines of Boyd and Richerson
(1988, p.135) and Richerson and Boyd (2005, p.69)

Learning

Individual Learning, e.g., trial & error, reasoning, etc.

Social Learning

(β) Non Success-Based

(β2) Peer Imitation

(β1) Authority Imitation

(α) Success-Based

(α1) Relative Weighting

Take the Best

Figure 3: An overview of social learning strategies as used in machine learning applied in epistem-
ology

and-error learning, reasoning, etc. Social learning strategies are either success-
based (α) or not success-based (β). Success-based strategies accept more trans-
missions from successful parental traits than from non-successful ones. Take
the best, e.g., simply favors the most successful trait of the mother generation.
Relative weighting, on the other hand, blends traits according to a weighted av-
erage, where the weights are proportional to the traits’ past success. In machine
learning and in recent approaches of social epistemology, relative weighting is
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studied under the term meta-induction, since success-based weighting can be
regarded as induction over success rates (Schurz 2008, 2019).

Comparing the two taxonomies, several points are worth noting: Non-
success-based social learning and non-frequency-based biased social learning,
do not only cover the mentioned forms of imitation, but also the so-called fast
and frugal heuristics of Gigerenzer, Todd and The ABC Research Group (1999).
In contrast to the biases mentioned above, which are parameters of selection
(Boyd and Richerson 1988, p.136), guided variation is a form of individual
learning (see figure 2), because it generates alternative cultural traits. It is com-
mon in cultural evolution (cf., e.g., Mesoudi 2011, p.63). Sufficiently rational
agents will prefer some variants over others. In the context of cumulative evol-
ution, this is not a problem, but an advantage, because fewer dysfunctional
mutations are passed on in the evolutionary dynamic. The space of possib-
ilities of variants (many of which are indeed dysfunctional) shrinks, and that
leads to an acceleration of the generation of complexity in cultural evolution in
comparison to natural evolution.

Furthermore, note that the notion of success as it is used in the taxonomy
of figure 3 might be different from the notion of success in the sense of prestige
which is employed by Richerson and Boyd (2005) for describing model-based
biased social learning (β in figure 2). In fact, in our model of blending inheritance
in section 4 we will equate the success of a cultural variant with the frequency
of the variant in the mother generation. For this reason, success-based social
learning according to the taxonomy of figure 3 is, at a surface level, comparable
to frequency-based biased social learning of figure 2 (both αs). However, the
important difference between both models of frequency-dependent cultural
transmission is that frequency-based biased cultural transmission (figure 2) is
not blending, since it selects only among the cultural alternatives provided by
the mother generation, [246] whereas frequency-based relative weighting (fig-
ure 3) is blending, since it creates new cultural variants. In this respect, our
way of modeling blending is closer to the model of guided variation of Boyd
and Richerson (1988, p.136). Therefore, we will concentrate on this model and
not on their model on frequency-dependent biased social learning.

In order to embed our model even deeper into recent debates about learn-
ing and cultural evolution, let us briefly highlight another model from the lit-
erature that resembles our approach in some features, but differs in others.
In a series of papers, Griffiths and Kalish (2007) develop an iterative learning
framework with Bayesian Agents, which combines individual and social learn-
ing, occupying a middle ground between the two. Focusing on the evolution
of language, the authors present a dynamic analysis of social learning. They
understand the process of learning as an agent choosing from a set of hypo-
theses and data. Applying Bayes’ rule (an ability that the agent must be cap-
able of, cf. Griffiths and Kalish 2007, p 472, assumption 3), she can either choose
a given hypothesis (which she has acquired via the observation of others) or
new data in light of a given hypothesis (cf. Griffiths and Kalish 2007, p.444).
Griffiths and Kalish primarily focus on and reflect the strong influence of the
(Bayesian) prior of the learner and its effects on the accuracy of transmission
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processes. Convergence of the probability that a learner speaks a particular
language to the prior probability the learner assigns to that language occurs
regardless of the amount of data available to each learner (cf. Griffiths and
Kalish 2007, p.444). Their mathematical findings suggest that the influence of
inductive biases (individual constraints on learning which influence our con-
clusions from incomplete knowledge) seem to have a very strong effect on iter-
ated social learning. Furthermore, inductive biases strongly resemble cultural
guided variation, since both emphasize the individual aspect of learning (cf.
Mesoudi 2011). In contrast to these models, our investigation (cf. section 4)
focuses merely on the process of social learning, meaning that our agents lack
any form of individual bias. However, as we will see, a purely social learner
can still achieve optimal performance.

Having illustrated what blending inheritance is and how it influences the
process of cultural evolution, we will now take a closer look at the formal struc-
ture of a success-based mechanism of cultural inheritance by studying models
of cultural evolution (section 3) and implementing blending in a success-based
manner (section 4).

3 Models of Cultural Evolution

Boyd and Richerson (1988) investigate (almost) all forms of biased social learn-
ing as described in the taxonomy in figure 2: content-based biased social learn-
ing (chpt.5, parameter B, representing an inherent disposition of a cultural
trait to be preferred against some other, cf. p.138), model-based biased social
learning (chpt.8, via the so-called runaway processes), and conformist frequency-
based biased social learning (chpt.7, cf., e.g., parameter D, p.209). In the fol-
lowing subsection, we will describe their model of blending inheritance via
social learning in detail. [247] Subsequently, we will discuss a population dy-
namical model which serves as a basis for our model of success-based blending
inheritance in section 4.

3.1 Cultural Evolution via Social Learning

Robert Boyd and Peter J. Richerson argue that very often in the cultural realm
data, e.g. data about people in a political spectrum, can be represented by a
normal distribution (see figure 4). This means that one can take the frequencies,
e.g. of the number of left-wing, centered, right-wing people, and summarize
them in a probability density of a normal distribution. Thus, one defines the
probability Pr of some member of the group being left-wing etc. The normal
distribution is characterized by two factors: µ, the mean, which is also the
frequencies’ median and mode, and σ, the standard deviation (i.e. the average
deviation from µ), where σ2 is considered to be a measure for variance within
the sample. The probability that some of the X of generation n, i.e. some of
Xn, take value x, e.g. that some member of the group under consideration Xn

holds position x in the political spectrum, is:
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Pr(Xn = x) =
1√

2πσ2
e−

(x−µ)2

2σ2

left right x

Pr(Xn = x)

Figure 4: Example of a normal distribution of political attitudes (x) as a cultural trait in generation
Xn. Of course, whether political attitudes are normally distributed or not depends on the scale
of measurement and the chosen categories (e.g. it depends on whether the frequencies of the cat-
egories left, center-left, center, center-right, right—cf. the light-gray bars—or frequencies of other
categories of political attitudes result in a Gaussian shape.)

Based on this assumption, Boyd and Richerson propose a model for the trans-
mission of cultural traits by means of social learning (see figure5). Their idea is
that a cultural trait can be transmitted by individual learning (copying that is
possibly defective) and social learning about an objective, an ideal state of the
system. The model has the following parameters:

• Xn is the cultural trait to be copied under investigation, expressed as a
random variable and defined by µ(Xn) and σ2(Xn). [248]

• s is the optimal state of the cultural trait; it is supposed to be the objective
or goal value, i.e. the value of the distribution that fares best in the system
or habitat (cf. Γ(H) and H in Boyd and Richerson 1988, p.95). So, in a
sense, s encodes selective pressure: the closer an individual is to s, the
better it will fare in the system.

• l is a parameter in [0, 1] which expresses the individuals’ propensity to
rely on individual as opposed to social learning (cf. L in Boyd and Rich-
erson 1988, p.95). Individual learning is maximal if l = 0 and social
learning is maximal, if l = 1.

• E is an error distribution which characterizes a deviation during the
learning process due to environmental effects, random variation, and es-
timation errors (cf. Boyd and Richerson 1988, p.71). It is defined by µ(E)
and σ2(E). E might be considered the cultural counterpart of mutation
in natural evolution.

• Xn+1 is the cultural trait of the next generation resulting from individual
learning and social learning. It is defined by µ(Xn+1) and σ2(Xn+1).
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In short, cultural transmission from Xn to Xn+1 depends on individual, pos-
sibly defective, learning, and cultural learning aiming at s; both are balanced
by the parameter l. The influence of individual learning (encoded in Xn) is
taken into account via the influence of error, i.e. σ2(E); the influence of so-
cial learning (s with error during social learning E) is taken into account via l.
Calculating weights by normalizing, we end up with (cf. equ.4.9 in Boyd and
Richerson 1988, p.95):

Xn+1 =
σ2(E)

σ2(E) + l
· Xn +

l
σ2(E) + l

· (s + E) (1)

[249] Given that the learning error is not biased, i.e. µ(E) = 0, Boyd and Rich-
erson show that the resulting cultural trait is a density function with the fol-
lowing properties/values (cf. equ.4.10 in Boyd and Richerson 1988, p.96):

µ(Xn+1) =
σ2(E)

σ2(E) + l
· µ(Xn) +

l
σ2(E) + l

· s

σ2(Xn+1) =

(
σ2(E)

σ2(E) + l

)2

· σ2(Xn) +

(
l

σ2(E) + l

)2
· σ2(E)

Pr(Xn = x)

. . .
Pr(Xn+8 = x)

E

left rights
x

density

Figure 5: Political attitude with social learning in the model of Boyd and Richerson: Starting from
the political attitude of generation n (Xn of figure 4) through social learning with l > 0 (here l =
0.5), although defective, but unbiased (µ(E) = 0), evolution via guided variation tends towards
the best fitted political attitude with value s. (Data generated with Perl.)

Now, given l > 0 (and a constant and uniform environment), it follows that
iterated individual and social learning will lead to µ(Xn+1) = s. Note that
the model assumes that individual learning is fully implemented by the first
summand in equation 1. Given the assumption that the learning error is not
biased (which means that error is not functional), according to this model, s
can be only learned if l > 0. If error E is functional, then also l = 0 allows for
learning s. An equilibrium of the system is reached, if Xn+1 = Xn. Since the

weights σ2(E)
σ2(E)+l and l

σ2(E)+l add up to 1, the value for the mean in equilibrium

state, X̂, is calculated as follows:

µ(X̂) =
σ2(E)

σ2(E) + l
· µ(X̂) +

l
σ2(E) + l

· s = s
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Such an equilibrium state is depicted in figure 6. The equilibrium variance is
more complex, but turns out to be:

σ2(X̂) =

(
σ2(E)

σ2(E) + l

)2

· σ2(X̂) +

(
l

σ2(E) + l

)2
· σ2(E) =

σ2(E) · l
2σ2(E) + l

Pr(Xn = x)E

Pr(X̂ = x)

left rights
x

density

Figure 6: Political attitude: The equilibrium state X̂ centers around the political attitude best fitted
with value s. (Data generated with Perl.)

It is important to note that we can map three relevant parameters in this
model to the three modules of generalized Darwinism: Selection is taking
place via s. Variation comes in two forms: guided variation via l; mutation
via E; [250] and the reproduction dynamics is captured via the cultural traits
Xn, Xn+1, . . . . This model and its interpretation show that a sufficiently high
degree of information transmission into the next cultural generation suffices
for cumulative cultural evolution. Exact replication of the original is not neces-
sary (cf. Henrich, Boyd and Richerson 2008, misunderstanding 2).

This model was one of the first influential models of cultural evolution. It is
relatively simple and allows for an explanation of reproductive success via so-
cial learning: Through social learning the mean of a cultural trait (µ(X̂)) tends
towards the best fitted value (s). However, there are also some restrictions to
this model (cf. Schurz 2011, p.220): First, social learning is only successful in
the strict sense of µ(X̂) = s in case that there is no bias in the reproduction
error (µ(E) = 0). And second, selective pressure of social learning is held
fixed in the model via the cross-generational parameter l. For this reason it is
also independent from the reproduction rate, although frequency dependency
is an important feature of cultural transmission. Boyd and Richerson (1988)
discuss possibilities to relax these constraints. E.g., also in case of a biased re-
production error one can still approach the learning target s, though there is
no guarantee to, in fact, learn s. It seems that such an approximation can still
be considered as learning success, and hence successful cultural transmission
seems to be possible also in case of biased error. Regarding the problem that l
is cross-generationally defined, Boyd and Richerson (1988, pp.99f) also discuss
models where l changes (due to genetic influence). However, this variation of l
is still not dependent on the relative frequency of the cultural traits. Our model
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in section 4 aims at adding such frequency dependency to a model of blend-
ing. Furthermore, we want to expand Boyd and Richerson’s result on cultural
transmission: We show that even without an objective learning target s, one
can define a frequency-dependent social learning (blending) strategy which is
long-run optimal. In the next subsection we will introduce the population dy-
namical model on which our model of blending inheritance is based.

3.2 Population Dynamics of Cultural Evolution

The first mathematical models of population dynamics trace back to Ronald
A. Fisher and John B.S. Haldane (cf. Fisher 1930; and Haldane 1964/2008). A
clear and didactically valuable introduction is given by Ridley (2004). Starting
with a general scheme, different models for natural and cultural evolution are
spelled out and refined. The general scheme has the following ingredients (cf.
Schurz 2011, sect.12.3, notation adjusted to the one above):

• v1, . . . , vk . . . possible variants/values of a system; a set of variants V in
a certain environment is called a population;

• Pr(Xn = vi) . . . relative frequency of Xn taking value vi

• Generations: Pr(Xn+1 = vi): The relative frequency of vis in the next
generation (Xn+1).

[251] The simplest models of population dynamics operate only on the vari-
ants’ frequencies across different generations—these are models of cultural re-
production. By introducing a selection coefficient s which constrains the vari-
ants’ frequencies across different generations, these models are expanded to
models of cultural reproduction and selection (Schurz 2011, p.285, p.292). In
a further step, one can take variation (in a wide sense) into account via biases
in errors. This can be done by introducing a parameter m into the dynam-
ics that represents the mutation rate of a variant. E.g., a mutation of variant
v1 to variant v2 in 1h of the cases could be represented by mv1−→v2 = 0.001;
so mv1−→v2 · Pr(Xn = v1) is the number of v1-variants in generation Xn that
mutate back to v2-variants in generation Xn+1. Of course, mutation can also
take place the other way round, from v2 to v1, but we assume that this direction
is already subtracted from the higher mutation rate (so, e.g, mv2−→v1 = 0). Fur-
thermore, it is important to note that mutation is understood only as mutation
from one variant of a population X to another. The evolution of new variants
is not covered by this. This is also the reason why we expand the model in the
next section (4) in order to describe such an evolution of new variants, that is,
evolution by blending.

In order to implement a mutation mechanism into the dynamics, the num-
ber of mutated variants must be subtracted from and added to the frequency
of the variant. The resulting formula is as follows:
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Pr(Xn+1 = vi) =

Pr(Xn = vi) · si −
k
∑

o ̸=i
Pr(Xn = vi) · mvi−→vo +

k
∑

o ̸=i
Pr(Xn = vo) · mvo−→vi

k
∑

j=1
Pr(Xn = vj) · sj

The selection coefficient s of this model measures fitness in the sense of se-
lective advantage, and not selective disadvantage (as is the more common use
of the term ‘selection coefficient’). We choose s as a measure for selective ad-
vantage to use terminology coherent to the preceding subsection (where s was
interpreted as the relevant parameter for selection).

The question for equilibria for a variant in this model is stated similarly
as in the model of Boyd and Richerson by equating Xn+1 = Xn = X̂: Biased
error, implemented via a mutation rate m, allows for equilibria where not all
the other variants disappear completely. So, in the case of two variants with
a positive selection of variant v1, the frequency of v1 has to reach only 1 −
mv1−→v2 /(s1 − s2) in order to be in an equilibrium (Pr(Xn+1) = Pr(Xn)). If
s1 = 1 and s2 = 1 − s, the equilibrium state is at 1 − mv1−→v2 /s (cf. Schurz
2011, p.300). Figure 7 depicts a case of a population dynamics with selection,
variation (mutation), and reproduction. The mutation rate of a variant vi has
to be smaller than the selective advantage of that variant. Otherwise it will
disappear (mutate away) before it can become positively selected. [252]
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Figure 7: Natural and cultural evolution with reproduction, selection, and mutation in the pop-
ulation dynamical model of Schurz (2011). Parameters: natural evolution, selection of a domin-
ant allele (NE (s dominant)): sdominant = 1, srecessive = 1 − 0.2 = 0.8, mdominant−→recessive = 5h,
Pr(X0 = vdominant) = 0.01, Pr(X0 = vrecessive) = 0.99; natural evolution, selection of a recess-
ive allele (NE (s recessive)): sdominant = 1 − 0.2 = 0.8, srecessive = 1, mrecessive−→dominant = 1h,
Pr(X0 = vdominant) = 0.99, Pr(X0 = vrecessive) = 0.01; cultural evolution (CE): s1 = 1,
s2 = 1 − 0.2 = 0.8, mv1−→v2 = 31.6h, Pr(X0 = v1) = 0.01, Pr(X0 = v2) = 0.99; the equi-
librium state is reached at a relative frequency Pr(X̂ = v1) = 1 − 0.0316/0.2 = 0.842; only the
positively selected variant’s progression is depicted; (Data generated with Perl.)

As we have mentioned in the preceding section, in the model of Boyd and
Richerson, the parameter l weights the importance of social learning, but is the
same for all variants and independent from the variants’ reproductive success.
In cultural evolution, however, it seems that social learning is correlated with
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reproductive success. It is positively correlated when conformity (positive fre-
quency dependency) is relevant for fitness; and it is negatively correlated when
originality (negative frequency dependency) marks a fit variant. Note that fre-
quency dependency does not automatically imply that traits with higher fitness
in the sense of higher frequency are also learned more frequently. Rather, fre-
quency dependency means that the fitness coefficients are themselves a func-
tion of the frequency of the traits. This is an important difference, because due
to such frequency dependency, stable equilibria are no longer guaranteed, but
ongoing oscillations are possible (such cases are also covered by our model).

In the above equation such a dependency can be implemented via fine-
graining the selection coefficient si of a variant vi by making it dependent on
the frequency of the variant (|vi|Xn ). By this we finally end up with the fol-
lowing model: [253]

Pr(Xn+1 = vi) =

Pr(Xn = vi) · si(Pr(Xn = vi))

−
k
∑

i ̸=o=1
Pr(Xn = vi) · mvi−→vo

+
k
∑

i ̸=o=1
Pr(Xn = vo) · mvo−→vi

k
∑

j=1
Pr(Xn = vj) · sj(Pr(Xn = vj))

(2)

Schurz (2011, chpt.14.1) shows that linear dependence of si to Pr(Xn = vi) does
not change the equilibrium state, neither in case of a positive nor in case of a
negative dependency—such a case is depicted in figure 8. Things turn out to
be different for non-linear dependence: There, negative dependency leads to
oscillations, whereas positive dependency might switch the equilibrium state
to another extreme.
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Figure 8: Cultural evolution with reproduction, selection, and mutation in a frequency depend-
ent model. Parameters: si is frequency dependent, Pr(X0 = v1) = 0.01, Pr(X0 = v2) = 0.99;
mv1−→v2 = 0.05; in case of a linear dependence of more than 1.56 times the ancestor frequency v1
takes over v2 in the equilibrium state. (Data generated with Perl.)

The models presented so far combine several features: Boyd and Rich-
erson’s model allows for blending inheritance by the combination of variants
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via social learning, but it does not implement frequency dependency. In ad-
dition, the population dynamical model presented in equation 2 implements
frequency dependency, but does not include blending. In the following part,
we will combine both approaches by expanding this model to a model where
variants are blended.

4 A Success-Based Model of Blending Inheritance

In this section, we will spell out the frequency-dependency of the selection
parameter s used in the foregoing model in more detail. As we will see soon,
this allows for blending via social learning. Schurz (2011) mentions this expan-
sion of his model and highlights its significance: [254]

“Despite the realm of epistemology, meta-induction [understood as
success-based blending] is also of utmost importance for cultural
evolution. In cultural evolution, innate cognitive modules play the
role of non-inductive strategies, individual trial-and-error learn-
ing plays the role of object-inductive strategies, and meta-inductive
strategies correspond to methods of social learning. The optimality
results of meta-induction explain the advantage of creatures who
are able to undergo change through cultural evolution.” (Schurz
2011, pp.387f, our translation)

The main idea underlying the expansion of the model is to make the selection
coefficient for a variant vi (i.e. si) not only dependent on the frequency of the
variant (Pr(Xn = vi)), but also dependent on the frequencies of the other vari-
ants. Whereas the dependency of si on Pr(Xn = vi) alone is called reflective
frequency dependency, the latter is called interactive frequency dependency (Schurz
2011, p.311). In biology, several models for interactive frequency dependency
have been discussed, e.g. the so-called predator–prey equations of Alfred J. Lotka
and Vito Volterra (note that in predator-prey equation models dying out is pos-
sible and thus they allow for changes in the absolute population size, while in
the models discussed so far the absolute population size is fixed). Also in the
cultural domain, interactive frequency dependent selection has been invest-
igated regarding the development of meaning (cf. Mühlenbernd and Franke
2014, sect.1): In a generalized evolutionary game theory, one might try to spell
out evolutionary strategies that interact with one another, resulting in mod-
els of interactive frequency dependency. The investigation of Roland Mühlen-
bernd and Michael Franke already makes use of success-based imitation or re-
production. However, a relevant difference to our approach is that we intro-
duce relative-success-based blending, which allows for an optimality result for
an equilibrium state tending in a similar direction as that of Boyd and Richer-
son presented above. In the following we will spell out our approach in more
detail.
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4.1 The Model and Some Analytic Results

Assuming that the fitness or success of a variant vi consists in its magnitude
or relative frequency Pr(Xn = vi), one can try to socially learn from variants by
blending the relatively successful ones. To return to the example of Boyd and
Richerson, if v1 and v2 are the most successful variants centring around the
correct or ideal state s, then blending v1 and v2 to (v1 + v2)/2 might be inter-
preted as socially learning from these variants that also center around the ideal
state. Boyd and Richerson interpret social learning as erroneous (E) taking into
account the ideal state (s) to some fixed degree (l). In our model, we interpret
social learning as blending those variants (vi) which were relatively successfully
in terms of frequencies (Pr(Xn = vi)). The formal theory of this interpretation
stems from mathematical learning theory in general, and from the theory of on-
line predictions based on expert advice in particular (cf. Cesa-Bianchi and Lugosi
2006; Schurz 2008, 2019). [255] An important result of this theory is the obser-
vation that relative-success-based weighting (cf. α1 in the taxonomy of figure 3)
turns out to be long-run access-optimal in every environment or habitat (even
oscillating ones).

The ingredients of our model are the same as that of the population dy-
namical model of the preceding section. However, we assume that there is a
learning variant vl (for some 1 ≤ l ≤ k). For this variant, the selection coefficient
sl is made relative-success-dependent on all variant’s past frequencies. We will
implement this by varying vl at each generation depending on all variants’ past
frequencies. The idea is that by such a blending/learning, vl approximates the
most successful variants in the long run. Here are the details of the blending
mechanism we propose:

• We define a loss function, which calculates the difference between the
relative frequency of a variant from the best fitted variant in a generation
n and normalizes it (∈ [0, 1]):

dn(i) =
|Pr(Xn = vi)− max(Pr(Xn = v1), . . . , Pr(Xn = vk))|

max(Pr(Xn = v1), . . . , Pr(Xn = vk))

(Note that in machine learning literature the difference between a vari-
ant’s (cumulative) loss and the best variant’s (cumulative) loss is also
called the “regret” of the variant with respect to the best variant; cf., e.g.,
Cesa-Bianchi and Lugosi 2006, p.2.)

• Based on this loss function we define a measure for normalized success
of a variant up to generation n as the inverse of the average natural loss:

asn(i) =

n
∑

m=1
1 − dn(m)

i

• Based on the normalized success of a variant up to generation n we define
the relative success of a variant with respect to the social learning variant
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vl up to generation n by cutting off (i.e. setting 0) the normalized success
of those variants that fare worse than the socially learning variant vl :

rsn(i) =
{

asn(i), if i ̸= l and asn(i) ≥ asn(l)
0, otherwise

(What we call “relative success” here is also called “attractivity” in the
literature on meta-induction; we opted for the former expression because
the latter is also used in Sperber’s cultural attraction model and might
have caused confusion here; for meta-inductive attractivity cf. Schurz
2008, sect.7.)

• Based on the relative success of a variant up to generation n, we define
a weight for the variant for generation n + 1 by normalizing the relative
success: [256]

wn+1(i) =


rsn(i)

k
∑

j=1
rsn(j)

, if
k
∑

j=1
rsn(j) > 0

1
k−1 , otherwise

• And, finally, based on these weights for generation n + 1, we define the
social learning of variant vl for generation n + 1 as:

vn+1
l =

k

∑
l ̸=j=1

wn+1(j) · vj

v0
l may be defined as blending by unweighted averaging variants:

v0
l =

k
∑

l ̸=j=1
vj

k − 1

All the non-learning variants (vi with 1 ≤ i ̸= l ≤ k) remain constant. It is as-
sumed that they can be represented by real numbers as, e.g., political attitudes
on a real-valued spectrum. For their dynamics, the equation of the reflective
frequency dependent model of Schurz (2011) holds (si is only reflective fre-
quency dependent). For the learning variant vl , the equation must be adapted
by considering the interactive frequency-dependency of vl :

Pr(Xn+1 = vn+1
l ) =

Pr(Xn = vn
l ) · sl(Pr(Xn = vn

l ))−
k
∑

l ̸=i=1
Pr(Xn = vn

l ) · mvn
l −→vi

k
∑

i=1
Pr(Xn = vi) · si(Pr(Xn = vi))

Since vn
l and vn+1

l are functions on the frequencies of all variants, the selection
coefficient sl also turns out the be a function of these and by this sl is interact-
ively frequency dependent.
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How do we estimate the equilibrium state for the social learning variant
vl , i.e. what happens if Xn+1 = Xn = X̂? The situation is quite difficult to
analyze. However, if, de facto, no change takes place any more, i.e., if there
really is an equilibrium, then vn+1

l = vn
l = v̂l . Now, optimality results of so-

cial learning via meta-induction state that the normalized success of a learning
variant vl approaches the normalized success of the best variant(s) in the limit
if the loss function is convex. Since dn(i) is a linear combination of convex
functions, dn(i) is also convex, so we can employ the following optimality res-
ult (cf. Schurz 2008, p.297; for a simplified proof cf. Feldbacher-Escamilla 2020,
appendix):

limn−→∞(asn(l)− asn(i)) ≥ 0 (1 ≤ i ≤ k)

[257] Since the equilibrium state equals the limiting case, this optimality result
holds for the equilibrium state too:

Pr(X̂ = v̂l) ≥ Pr(X̂ = vi) (1 ≤ i ≤ k)

So, in the equilibrium state the normalized success of the learning variant vl is
at least as high as that of the best fitted non-learning variant. If we identify the
best fitted variant in this state with vb, then we get—in analogy to the result of
Boyd and Richerson (µ(X̂) = s)—the limiting result for the learning-variant:

v̂l = vb

However, the model is not restricted to the equilibrium case, with a best fitted
variant vb; vl proves to be long-run optimal regarding any development of the
variants, even if the frequencies of the variants do not converge to a limit, but
oscillate (cf. the optimality results in Schurz 2008). Recall the learning target of
Boyd and Richerson’s model, namely to end up with (ideal) s or approximate it:
In contrast to this, our model of blending inheritance (vl) aims at optimization
in terms of approximating the best variants or even outperforming them.

4.2 Some Provisos and a Simulation

We had to make some assumptions in order to transfer the optimality-result
for the equilibrium state v̂l = vb. In the following we will provide a brief
discussion of those assumptions.

First, the blended variant is guaranteed to fare well in the long run with
respect to all the other variants. Whereas in Boyd and Richerson’s model, s can
be the truly maximal/ideal state of the system, in our model, s matches only the
best variants within the system. It is possible that, in reality, another variant
would fare much better, but vl may never approach it, because it only blends
accessible variants. So, a wide range of accessible variants is presupposed in our
model in order for vl to perform well. Note, however, that the assumption of
a constant absolute population size guarantees at least some minimal fitness.
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Since in evolutionary theory a comparative stance regarding success is much
more common than an absolute stance, this restriction should not be a problem.

Second, blending is very strong regarding the informational basis: All past
frequencies of accessible variants must be considered in calculating the weights
for vl’s blending. Furthermore, since we assume adaptive blending, the learning
variant also needs to be able to identify relevant features of the environment
and partition the frequencies to different types of environments. For real cases,
a restriction of such a strong assumption has to be considered.

Third, the optimality of variant vl with respect to the other variants
v1, . . . , vk in terms of relative frequencies is guaranteed only for the long run,
i.e. in the limit. In the short run, the performance of vl depends on the ex-
act evolutionary system under investigation. [258] However, one can derive
exact boundaries for the short run performance of vl (cf. Schurz 2008, p.297):
Pr(Xn = v1≤i ̸=l≤k)− Pr(Xn = vn

l ) ≤
√
(k − 1)/n. Short run performance of

relative-success-based blending is guaranteed to be within this bound; how-
ever, with the help of simulations one might also study improved perform-
ance of such blending. We conclude this section with a simulation to illustrate
relative-success-based blending inheritance.

Figure 9 illustrates a simulation of a case of blending via relative-success-
based weighting: The learning variant vl weights the better performing vari-
ants according to their past success in terms of relative frequencies. In the first
diagram, the development of vl is illustrated. Regarding relative frequencies,
the “cake is sliced”, of course, which means that if vl equals one of the other
variants, the success rate in terms of relative frequencies also equals that of the
other variant. This fact is depicted in the second diagram. The slice of frequen-
cies is corrected in the third diagram, where the relative frequencies of equal
variants (values which, strictly speaking, cannot be distinguished) are added
up. There, the learning variant vl coincides with one of the two variants of the
setting (v1, v2), except in cases where a shift in the relative-success-rates occurs.
In such cases, vl represents proper blending. It is rewarded with a bonus—here
modeled with a fixed parameter of +5% population size compared to the size
of the better of the two variants v1 and v2. Note that this parameter models the
assumption that blending is adaptive. The so-defined learning variant vl can be
shown to be expectation-optimal (cf. Schurz 2019, sect.6.7.1) also for the case of
random blending. However, to flesh out such an expansion will be the subject
of future investigation.

5 Conclusion

We have examined the phenomenon of blending inheritance within the frame-
work of cultural evolution. Although cultural and natural evolution may
share some relevant core properties on a general level of description—the ap-
plicability of an evolutionary algorithm consisting of variation, selection, and
reproduction—they also differ in some crucial and less crucial aspects. One of
the differences regards inheritance. Whereas in natural evolution inheritance
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Figure 9: Cultural evolution with reproduction, selection and no mutation with blending inherit-
ance via relative-success-based weighting in an interactive frequency dependent model. Paramet-
ers: s1 = 1, s2 = 1 − 0.02 = 0.98, Pr(X0 = v1) = 0.01, Pr(X0 = v2) = 0.66; the variants are
v1 = 0.75, v2 = 0.5; the mutation rates are 0: mv1−→v2 = mv2−→v1 = 0; vl starts with the frequency
of v1, i.e. Pr(X0 = v0

l ) = 0.01; if vn
l is not blended (unweighted imitation of variant v1 or v2), den

Pr(Xn = vn
l ) equals the frequency of the imitated variant v1 or v2: Pr(Xn = v1) or Pr(Xn = v2); if

vn
l is blended, i.e. weighting v1 and v2, then vn

l has a blending advantage/bonus of +5% over the
better variant; this implements the assumption that blending is adaptive; the fallback option of vn

l ,
i.e. its value if none of the variants has an attractivity above 0 is vn−1

l . (Data generated with Perl.)

[259] consists of a transmission of discrete units, in the cultural realm inherit-
ance happens, amongst others, via blending. Following Mesoudi (2011) and
the seminal work of Boyd and Richerson (1988), blending is a process of mix-
ing ideas and behavior in a non-random manner. Such cultural transmission is
often constituted by individuals who try to estimate which behavior of other
individuals in their immediate environment may have been favored by selec-
tion in previous generations. This fact is captured by several forms of learning
dynamics in general, and forms of average imitation in particular.

In the second part of the paper, we took a closer look at the formal structure
of cultural transmission. To implement a proper formal model which captures
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as many facets of cultural transmission as possible and feasible, we proposed
the merger of two famous approaches to cultural evolution, the classical stat-
istical model of information transmission by Boyd and Richerson (1988), and
population dynamical models as presented e.g. by Schurz (2011). [260]

The first model allows for blending inheritance and the achievement of an
ideal state s of a system, if such a state exists. The second model allows for
so-called interactive frequency dependency, a key feature of cultural transmission,
but does not implement blending inheritance. A combination of the two mod-
els captures as many facets as possible.

Our formal expansion allows not only for reflective, but also for interactive
frequency dependency. Not only is its selection coefficient of any given variant
of a cultural trait dependent on the variant’s frequency, but its fitness depends
also on the frequency of other variants. It is a form of relative-success-based
blending, where an agent observes the success rates of other agents, respective
to the fitness of their cultural traits, and then combines them into a weighted
average. A general result shows that, in the long run, the normalized success
of this form of social learning or relative-success-based cultural inheritance of
traits is at least as good as the fittest non-learning variant.

To conclude: Blending inheritance allows for an increase in relative fre-
quency of a cultural trait; therefore it is rationally applicable and probably one
of the main reasons for the speed of cultural evolution. If we assume that
agents blend traits together under a success-guided principle of weighting, this
strategy is guaranteed to produce new and—in the long run—more successful
traits in cultural evolution.
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